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1 Overview

TRLAN is a program designed to �nd a small number of extreme eigenvalues and their

corresponding eigenvectors of a real symmetric matrix. Denote the matrix as A, the eigen-

value as �, and the corresponding eigenvector as x, they are de�ned by the following equa-

tion,

Ax = �x:

There are a number of di�erent implementations of the Lanczos algorithm available1.

Why another one? Our main motivation is to develop a specialized version that only

target the case where one wants both eigenvalues and eigenvectors of a large real symmetric

eigenvalue problems that can not use the shift-and-invert scheme. In this case the standard

non-restarted Lanczos algorithm requires one to store a large number of Lanczos vectors

which can cause storage problem and make each iteration of the method very expensive.

The underlying algorithm of TRLAN is a dynamic thick-restart Lanczos algorithm. Like

all restarted methods, the user can choose how many vectors can be generated at once.

Typically, the user choose a moderate size so that all Lanczos vectors can be stored in

core. This allows the restarted methods to execute eÆciently. This implementation of the

thick-restart Lanczos method also uses the latest restarting technique, it is very e�ective

in reducing the time required to compute a desired solutions compared to similar restarted

Lanczos schemes, e.g., ARPACK2.

When solving most problems, the three most time-consuming procedures in the Lanczos

method are the matrix-vector multiplication, re-orthogonalization and computation of the

Ritz vectors. To make this package as small as possible, we have delegated the task of per-

forming the matrix-vector multiplication to the user. This is a reasonable approach because

there is simply too many possible ways of performing the operation and the user usually can

construct a specialize version that is better than a generic matrix-vector multiplication rou-

tine. In addition, there are high quality matrix-vector multiplication routines available as

parts of larger packages, for example, P SPARSLIB, AZTEC, BLOCKSOLVE and PETSc,

see Section 5.2 [operator interface], page 21, for details. To reduce the amount of the time

spent in re-orthogonalization, we only perform re-orthogonalization if it is necessary. The

Ritz vectors are computed as during the restarting process, in TRLAN, we only compute

those that are determined to be needed. This reduces the number of Ritz vectors computed.

To compute them eÆciently, we call the BLAS library to perform the actual computation.

The program is implemented in Fortran 90. The main advantages of using Fortran 90

compared to Fortran 77 is that Fortran 90 o�ers dynamic memory management which

make it more exible in terms of allocating temporary work arrays. If there is an array

not used for other task, it can be passed into TRLAN, else the user can simple let TRLAN

allocate its own work arrays. TRLAN internal allocate all the space it requires up front to

avoid repeated call to allocated small pieces of workspace.

Similar to other languages, such as C/C++, Fortran 90 o�ers data encapsulation which

makes it convenient to pass a signi�cant amount of information cleanly. TRLAN packages

1 Many mathematical packages are available from NETLIB (http://www.netlib.org/)

and ACM TOMS (http://www.acm.org/toms/).
2 ARPACK can be found at http://www.caam.rice.edu/software/ARPACK/.
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a large amount of information in a single object to reduce the size of the external user

interface. See Chapter 4 [TRL INFO module], page 7, for details. A signi�cant advantage

of using Fortran compared to C/C++ is the ease of using computational libraries such as

BLAS and LAPACK. In fact, most numerical computations of TRLAN are performed using

those library functions. Because most machines have vendor optimized BLAS and LAPACK,

being able to e�ectively use them is crucial to the e�ectiveness of TRLAN package.

Fortran 90 also provides some utility functions such as query function for the machine

precision, random number generator and timing functions. They make the program more

portable across di�erent platforms.

Parts of this document contains details about the software package which may not be

of interest to every user. Here are some advice on how to use this document. If you

just want to get a feel of how TRLAN looks like in a program, take a look at Chapter 3

[Example], page 4 or the examples come with the software package. Chapter 3 contains a

short example that uses mostly default parameters. To assert more control over TRLAN, see

Chapter 4 [TRL INFO module], page 7, and Chapter 5 [TRLAN interface], page 20. If you

are somewhat puzzled about how to choose the parameters, see Chapter 6 [Parameters],

page 24, for our recommendations. If you don't use Fortran 90, see Section 7.3 [other

languages], page 27, for what to do. For most users, there is no need to read everything in

Section 4.6 [elements], page 13, and Section 4.7 [error code], page 14. If you read the entire

document and are still puzzled, contact the authors, see Section 7.5 [contacting authors],

page 28.
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2 Installation

The source code of the package is available at

http://www.nersc.gov/~kewu/trlan.tar.gz.

This document is distributed with the package and is also separately available at

http://www.nersc.gov/~kewu/ps/trlan-ug.ps.

The package may be unpacked by

tar -xzf trlan.tar.gz

If you tar program does not recognize ag z, you can unpack it in two steps

gunzip trlan.tar.gz

tar -xf trlan.tar

After this, the �les in the package will be unpacked into a directory called `TRLan'.

To install the package, you will need a Fortran 90 compiler, the BLAS and LAPACK

libraries. On parallel machines, MPI is also needed. The compiler name and the options

used are speci�ed in the �le called `Make.inc'. A number of examples are provided in the

�le for di�erent machines. If your compiler name and library locations are same as one of

the examples, you can uncomment the section, comment out the default values, and use

the settings. If your compiler has a di�erent name or the libraries are located at a di�erent

place, you will need to modify the �le to refer to their correct values. The package may

be compiled into one of the two library �les libtrlan.a and libtrlan_mpi.a where the

former is the sequential version of the package and the latter is the parallel version. To

generate them go to `TRLan' and type

make libtrlan.a

or
make libtrlan_mpi.a

To compile the examples, go to the appropriate subdirectory in `examples'. If you are

on a sequential or a shared memory computer and there is no subdirectory that matches

your computer, the source code in the SUN directory can be used. The examples in `T3E'

and `psp' can be run on parallel machines that support MPI. `Makefile' in the `T3E' and

`psp' directories are only tested on a Cray T3E. They will need modi�cation in order to

be used elsewhere. The examples in directory `psp' also need a special supporting library

called P SPARSLIB, read the �le `README' before try to use it.

There are three examples in most example directories (except `psp'), simple, simple77

and simplec. These are three programs should be doing the same thing using three di�erent

languages. The executables can be generated by make

make simple simplec simple77

They should output the same eigenvalues, however the actual printout may di�er slightly

due oating-point round-o� errors.

For further questions, consult the `README' �les in the directories. To report errors in the

installation procedure or suggest improvements, the authors can be reached at kwu@lbl.gov

(Kesheng Wu) and hdsimon@lbl.gov (Horst Simon).
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3 A small example

This is a simple example in Fortran 90. It is short because we have used a very simple

matrix and used default parameters wherever possible. It uses MPI to handle data com-

munication required by TRLAN. This example comes with the distribution of the source

code in directory `examples/T3E'. The name of the �le is `s1.f90' and on T3E is can be

compiled by make s1 which generates the executable s1.

!!! a really simple example of how to use TRLAN

Program simple

Use trl_info

Use trl_interface

Implicit None

Include 'mpif.h'

! local variable declaration

Integer, Parameter :: nrow=100, lohi=-1, ned=5, maxlan=40, mev=10

Double Precision :: eval(mev), evec(nrow, mev)

Type(trl_info_t) :: info

Integer :: i

External diag_op ! name of the matrix-vector multiplication routine

Call MPI_INIT(i) ! initialize MPI

! initialize info -- tell TRLAN to compute NED smallest eigenvalues

Call trl_init_info(info, nrow, maxlan, lohi, ned)

! call TRLAN to compute the eigenvalues

Call trlan(diag_op, info, nrow, mev, eval, evec, nrow)

Call trl_print_info(info, nrow+nrow)

If (info%my_pe .Eq. 0) Then

write (6, FMT=100) (i, eval(i), i=1,info%nec)

End If

100 Format('E(', I1, ') = ', 1PG25.17)

Call MPI_finalize(i)

End Program simple

!!!

! a simple matrix-vector multiplications routine

! defines a diagonal matrix with value (1, 4, 9, 16, 25, 36, ...)

!!!

Subroutine diag_op(nrow, ncol, xin, ldx, yout, ldy)

Implicit None

Integer, Intent(in) :: nrow, ncol, ldx, ldy

Double Precision, Dimension(ldx*ncol), Intent(in) :: xin

Double Precision, Dimension(ldy*ncol), Intent(out) :: yout

Include 'mpif.h'

! local variables

Integer :: i, j, ioff, joff, doff

Call MPI_COMM_RANK(MPI_COMM_WORLD, i, j)

doff = nrow*i

Do j = 1, ncol

ioff = (j-1)*ldx

joff = (j-1)*ldy

Do i = 1, nrow
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yout(joff+i) = (doff+i)*(doff+i)*xin(ioff+i)

End Do

End Do

End Subroutine diag_op

There are two parts in this example, the main program and the matrix-vector multi-

plication subroutine. The main program sets up the info variable to carry information to

and from TRLAN, calls TRLAN, and prints the information carried out in info and the

eigenvalues computed. Here is a short explanation of the arguments to trl_init_info.

call trl_init_info(info, ! the variable to be set

nrow=100, ! there are 100 rows on each processor

maxlan=40, ! maximum Lanczos basis size is 40

lohi=-1, ! compute the smallest eigenvalues

ned=5) ! compute 5 eigenvalues

The calling sequence of TRLAN is fairly simple because all the gory details are hidden

inside info. The following listing describes the information required by TRLAN to solve

an eigenvalue problem.

call trlan(diag_op, ! matrix-vector multiplication routine

info, ! what eigenvalues to compute, etc.

nrow, ! 100 rows on this processor

mev, ! number of eigenpairs can be stored in

! eval and evec

eval, ! real(8) :: eval(mev)

! array to store eigenvalue

evec, ! real(8) :: evec(lde,mev)

! array to store the eigenvectors

lde) ! the leading dimension of evec

The content of info and the eigenvalues are printed separately. The content of info is

printed by calling trl_print_info which accepts two arguments, info to be printed and

the number of oating-point operations used for one matrix-vector multiplication on this

processor. The second parameter is needed because the matrix-vector multiplication is user-

supplied. The information is used to compute the speed of the matrix-vector multiplication

and the speed of the whole program. It can be ignored, in which case trl_print_info will

leave the related �elds blank.

The short matrix-vector multiplication routine, diag_op, performs multiplication with a

very simple matrix, diag(1, 4, 9, ...). The example tries to �nd 5 smallest eigenvalues

of this matrix, 1, 4, 9, 16, 25. The following is the output from a run on a T3E/900 located

at the National Energy Research Supercomputing Center1.

1998/09/24 18:37:16.834 (-07:00)

TRLAN execution summary (exit status = 0 ) on PE 0

Number of SMALLEST eigenpairs: 6 (computed), 5 (wanted)

Times the operator is applied: 847 (MAX: 2000 )

Problem size: 100 (PE: 0), 400 (Global)

Convergence tolerance: 1.490E-08 (rel), 2.384E-03 (abs)

Maximum basis size: 40

1 Information about the National Energy Research Supercomputing Center can be found

on the web at http://www.nersc.gov/.
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Restarting scheme: 0

Number of re-orthogonalizations 847

Number of (re)start loops: 36

Number of MPI processes: 4

Number of eigenpairs locked: 0

OP(MATVEC): 9.35440E-03 sec, 1.81091E+01 MFLOPS

Re-Orthogonalization: 2.12016E-01 sec, 4.68742E+01 MFLOPS

Restarting: 2.36795E-01 sec, 2.02369E+01 MFLOPS

TRLAN on this PE: 5.29851E-01 sec, 3.00020E+01 MFLOPS

-- Global summary --

Overall MATVEC Re-orth Restart

Time(ave) 5.2985E-01 9.4129E-03 2.1143E-01 2.3685E-01

Rate(tot) 1.2001E+02 7.1990E+01 1.8801E+02 8.0930E+01

E(1) = 0.99999999997742750

E(2) = 3.9999999999816311

E(3) = 8.9999999999916049

E(4) = 16.000000000026944

E(5) = 25.000000000089663

E(6) = 36.000000000367905

In short, to use TRLAN to �nd some extreme eigenvalues, the user de�nes a matrix-

vector multiplication routine with the same interface as diag_op, calls trl_init_info to

specify what eigenvalues to compute and calls trlan to perform the bulk of the computation.

The remainder of this manual will explain the user interface and how to control TRLAN

in more detail. How to Write a particular matrix-vector multiplication for an operator

is beyond the scope of this manual. Some packages containing distributed matrix-vector

multiplications routines are listed in Section 5.2 [operator interface], page 21.
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4 TRL INFO module

The example in previous chapter uses two modules, TRL INFO and TRL INTERFACE.

As the name suggested, TRL INTERFACE contains the user interface for accessing TR-

LAN. The module TRL INFO only contains the de�nition of the Fortran 90 derived type

TRL INFO T. To make it easy to access, we have provided six access functions, trl_

init_info, trl_set_debug, trl_set_iguess, trl_set_checkpoint, trl_print_info,

and trl_terse_info. The �rst four are for manipulate input parameters to TRLAN and

the last two are for printing the content of TRL INFO T. We will discuss these access

functions in this chapter. The remaining interface functions are described in the next

Chapter. The last two sections of this chapter may be skipped if the reader is only seeking

information on how to use the package.

4.1 Initialization

This initialization routine is equivalent to a generator function in C++. It is intended

to be called before any other TRLAN functions. Any parameter not explicitly set by the

caller is set to its default value and all internal counters are set to zero. Its Fortran 90

interface block is as follows,

Subroutine trl_init_info(info, nrow, mxlan, lohi, ned, tol,&

& trestart, maxmv, mpicom)

Use trl_info

Integer, Intent(in) :: lohi, mxlan, ned, nrow

Integer, Intent(in), Optional :: maxmv, mpicom, trestart

Real(8), Intent(in), Optional :: tol

Type(TRL_INFO_T), Intent(out) :: info

End Subroutine trl_init_info

We have seen the mandatory arguments in the example, however, there are four optional

arguments that were not used before. For completeness, we will give a short description of

all arguments here.

info: The Fortran 90 derived type that will carry the information to the trlan sub-

routine. It is set by this subroutine. Any prior content will be cleared.

nrow: The local problem size. The vectors are assumed to be distributed conformally,

i.e., if 10 elements of a Lanczos vector are located on a processor, the same 10

elements of all other Lanczos vectors are located on the same processor. The

variable nrow refers to the number of rows located on the current processor. It

may vary from processor to processor.

maxlan: The maximum Lanczos basis size. This determines the maximum memory re-

quirement of trlan. The restarted Lanczos algorithm will store up to maxlan

Lanczos vectors and one (1) residual vector. An additional memory of size

maxlan*(maxlan+10) is required to perform the Rayleigh-Ritz projection to

compute the approximate solutions. Generally, the larger maxlan is, the fewer

matrix-vector multiplications are needed. See Section 6.1 [basis size], page 24,

for further discussion on this parameter.
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lohi: This parameter indicates which end of the spectrum to compute. The Lanczos

algorithm is only able to compute the extreme eigenvalues e�ectively. The

choices are either to compute the smallest ones (lohi < 0), or the largest ones

(lohi > 0), or whatever converges �rst (lohi = 0).

ned: The number of eigenvalues and eigenvectors desired.

The parameters, nrow, maxlan, lohi, and

ned, are mandatory when calling trl_init_info. The following parameters

are optional because a reasonable value can be determined by trl_init_info.

tol: The relative tolerance on the residual norms. The Lanczos algorithm computes

the approximate solution to the eigenvalue problem. As more steps are taken,

the solutions become more accurate. For symmetric eigenvalue problems, the

residual norm is one of the most commonly used measure of the solution accu-

racy. If the approximate eigenvalue is �, and the approximate eigenvector is x,

the residual norm is de�ned to be r = kAx��xk. In TRLAN, the convergence

test is relative the norm of the matrix A. If

r < tolkAk;

then the approximate solution is considered converged. If this argument is not

present, it is set to the square root of the unit round-o� error. If the 8-byte

IEEE oating-point arithmetic is used, this default value is roughly 1:49�10�8.

restart: The ag to indicate which thick-restart scheme to use. In version 1.0 of TRLAN,

there are �ve choices for this parameter, 1, 2, 3, 4, 5. If this parameter is not

provided, the default choice is 0 which is treated same as 1 in the current imple-

mentation. See Section 6.3 [restarting scheme], page 25, for further discussion

on this parameter.

maxmv: The maximum number of matrix-vector multiplications allowed. The purpose of

this parameter is usually to make sure the program stop eventually in case of

stagnation. The default value is ned*ntot where ntot the global problem size.

mpicom: The MPI communicator to be used by trlan. This parameter is only meaningful

if MPI is used. If the sequential version is used, this variable is simply ignored

internally. If MPI is used and this variable is not set, trl_init_info will

duplicate MPI_COMM_WORLD and use the resulting communicator for its internal

communication operations.

4.2 Setting debug parameters

There are cases we would like to monitor the progress of the restarted Lanczos algorithm.

We can do this by setting a few logging parameters. Since the debug information may

be voluminous, trlan writes them to �les. Each MPI process will write its own debug

information to a separate �le. The name of the �le and how much debug information to

write is controlled by calling trl_set_debug.

Subroutine trl_set_debug(info, msglvl, iou, file)

Use trl_info
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implicit none

Type(TRL_INFO_T), intent(inout) :: info

integer, intent(in) :: msglvl, iou

Character*(*), Optional :: file

End Subroutine trl_set_debug

info: The TRL_INFO_T type variable to be modi�ed. The function trl_init_info

should have been called before calling trl_set_debug.

msglvl: This parameter controls how much debug information to print. If it is zero or

less, nothing is printed. When its value is between 1 and 10, the larger it is, the

more information is printed. When it is larger than 10, it has the same e�ect

as 10.

The function trl_init_info sets it to zero as the default value.

iou: The Fortran I/O unit number to be used when writing debug information. The

user should choose an I/O unit not used for anything else during the time trlan

is being used.

Trl_init_info sets it to 99 as the default value.

file: The leading part of the debug �le names. The debug �le names are form by

appending the MPI processor rank to this string. In sequential environment,

MPI processor rank is always zero (0). This is an optional argument to trl_

set_debug. When it is not set, the corresponding element of TRL_INFO_T is

not changed.

Trl_init_info sets this elements to `TRL_LOG_' by default.

4.3 Setting initial guess options

TRLAN program can either use a user-supplied initial guess, generate an arbitrary initial

guess or read a set of checkpoint �le to get starting vectors. The thick-restart Lanczos may

start with arbitrary number of vectors, however, the starting vectors have to satisfy a strict

relation. The simplest way to start the algorithm is to simply provide one starting vector. If

the function trl_set_iguess is not called, the starting vector is set to [1, ..., 1] by default.

The checkpoint option is implemented to enable a user to continue improve the accuracy of

the solutions progressively.

Subroutine trl_set_iguess(info, nec, iguess, oldcpf)

Use trl_info

Implicit None

Type(TRL_INFO_T) :: info

Integer, Intent(in) :: iguess, nec

Character(*), Intent(in), Optional :: oldcpf

End Subroutine trl_set_iguess

info: The TRL_INFO_T type variable to be modi�ed. The function trl_init_trl

should have been called before calling trl_set_iguess.

nec: The number of eigenvalues and eigenvectors already converged. If nec is greater

than zero (0), the �rst nec columns of array evec should contain eigenvectors of

the operator and the �rst nec elements of eval should contain the corresponding
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eigenvalues. This is designed to allow the user to return to trlan to compute

more eigenvalues and eigenvectors.

Trl_init_info sets this value to zero to indicate no converged eigenvalues.

iguess: The parameter to indicate option for initial guess vector.

<1: TRLAN will generate an arbitrary starting vector for the Lanczos

algorithm. If it is zero (0), vector [1, 1, ..., 1] is used. When

iguess is less than zero, a random perturbations will be added to

this vector before it is taken as the starting vector.

1: The user has supplied a starting vector. It will be used.

>1: TRLAN will read a checkpoint �le and use its content to start the

Lanczos process. The idea of checkpoint is explained later.

oldcpf: The leading portion of the existing checkpointing �le names. As with the log

�les, the checkpoint �les are named by concatenating this leading portion and

the MPI processor rank. The default value set by trl_init_info for this is

`TRL_CHECKPOINT_'.

NOTE: Reading the checkpoint �les are done through I/O unit cpio. Trl_init_info

sets this value to 98 by default. If I/O unit is used for another task already, use trl_set_

checkpoint to set cpio to an unused I/O unit number.

4.4 Checkpointing

TRLAN has implemented a scheme of checkpointing to allow the user to stop and restart.

The checkpoint �les of the thick-restart Lanczos algorithm contains all the information

necessary for it to continue the Lanczos iterations. To minimize the size of the �les, the

checkpoint �les are written at the end of the restart process because the basis is the smallest

in size at this point. For eÆciency reasons, each MPI processor writes its own checkpoint

�le in FORTRAN unformatted form. These checkpoint �les can only be read on the same type

of machines and using the same number of MPI processors. The function trl_set_iguess

controls whether the checkpoint �les are read. The following function controls when to

write the checkpoint �les.

Subroutine trl_set_checkpoint(info, cpflag, cpio, file)

Use trl_info

Implicit None

Type(TRL_INFO_T) :: info

Integer, Intent(in) :: cpflag, cpio

Character(*), Optional :: file

End Subroutine trl_set_checkpoint

info: The TRL_INFO_T type variable to be modi�ed. The function trl_init_trl

should have been called before calling trl_set_checkpoint.

cpflag: If this value is greater than zero, then TRLAN will write cpflag set of check-

pointing �les in maxmv iterations. If it is less or equal to zero, no checkpoint

�le is written. Checkpointing �les are only written if TRLAN runs correctly.

If cpflag is greater than zero, at least one set of checkpoint �les is written
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when TRLAN completes successfully. To debug the program, turn on verbose

printing by using trl_set_debug.

Trl_init_info sets this value to zero.

cpio: The FORTRAN I/O unit number to be used for writing checkpoint �les. The value

of cpio is set to 98 by default (trl_init_info).

file: The leading portion of the checkpoint �les. The checkpoint �le names are formed

by concatenating the value of this variable and the MPI processor rank. If this

argument is not present internally, the corresponding element of TRL_INFO_T is

not modi�ed.

Trl_init_info sets this variable to `TRL_CHECKPOINT_' by default.

4.5 Printing functions

Upon returning from trlan, the user may wish to exam the progress of trlan. One

simple way to do this is to printout the content of info. There are two printing functions

trl_print_info and trl_terse_info. Function trl_print_info is the one that printed

the results in Chapter 3 [Example], page 4. The following is the same information printed

using trl_terse_info.

NOTE: The eigenvalues are not stored in info. The following printout is from a di�erent

run of the same example, there is slight di�erence in time.

MAXLAN: 40, Restart: 0, NED: - 5, NEC: 6

MATVEC: 847, Reorth: 847, Nloop: 36, Nlocked: 0

Ttotal:0.535910, T_op:0.008962, Torth:0.209496, Tstart:0.238200

The Fortran 90 interface of the two subroutines are as follows.

Subroutine trl_print_info(info, mvop)

Use trl_info

Implicit None

Type(TRL_INFO_T), Intent(in) :: info

Integer, Intent(in) :: mvop

End Subroutine trl_print_info

Subroutine trl_terse_info(info, iou)

Use trl_info

Implicit None

Type(TRL_INFO_T), Intent(in) :: info

Integer, Intent(in) :: iou

End Subroutine trl_terse_info

info: The TRL_INFO_T variable to be printed. In addition of keeping track of how many

eigenvalues have converged and how many are wanted. There are signi�cant

amount of information about how many matrix-vector multiplications have been

used, how much time is used in various parts of the program, and so forth.

The verbose version of the printing function will printout most of the recorded

information that are deemed to be useful. The terse version only printout the

12 most important �elds.

mvop: The number of oating-point operations performed on one processor during one

matrix-vector multiplication. This information is used by the printing function
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trl_print_info to determine the speed of the matrix-vector multiplication and

the speed of the overall eigenvalue program. If this information is not present,

the relevant �elds are left blank in the printout. The variable info contains

timing information and oating-point operations performed inside the trlan.

Since the matrix-vector multiplication is a user-supplied function, the user has

to provide information about its complexity.

iou: The terse printing function trl_terse_info is allowed to print to any valid

FORTRAN I/O unit. This is di�erent from the verbose printing function where

the printout is always sent to the I/O unit that is used for logging debugging

information.

In addition to the di�erences mentioned already, the function trl_print_info requires

every processor to participate but trl_terse_info can be called by each processor individ-

ually. Because of this reason, trl_print_info can provide global performance information

but not trl_terse_info.

The verbose version of the printout is designed to be self-explanatory. The rate �elds for

oating-point operations are in MFLOPS. The rate of Read and Write refers to the speed

of reading and writing checkpoint �les, they are in MegaBytes per second. Since the simple

example shown does not use checkpointing, no information regarding Read and Write is

presented in the printout.

The heading for the terse version of the printout is bit cryptic. They are

MAXLAN: The maximum Lanczos basis size.

Restart: The ag of restarting scheme to be used, 0, ..., 5.

NED: Number of eigenvalues desired. It also contains an one-character sign which can

be +, -, or 0 to indicate which end of the spectrum is being computed.

NEC: Number of eigenvalues converged.

MATVEC: number of times the operator has been applied, i.e., the number of matrix-vector

multiplications, also the number of iterations.

Reorth: Number of times re-orthogonalization has been applied. Each time the Gram-

Schmidt procedure is called, this counter is incremented by one.

Nloop: Number of outer/restarted iterations.

Nlocked: Number of Ritz pairs that have extremely small residual norms ( < epsilon || A

||). Because the residual norms are so small, we lock the Ritz pairs to reduce

the among of arithmetic operations needed in Rayleigh-Ritz projection.

Ttotal: The total time (seconds) used by TRLAN.

T_op: The time (seconds) spent in performing matrix-vector multiplications.

Torth: The time (seconds) spent in performing re-orthogonalizations.

Tstart: The time (seconds) spent in restarting including performing Rayleigh-Ritz pro-

jections.
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4.6 The elements of TRL_INFO_T

In some instances, it might be necessary to directly access the status information in info

rather than print out the information. Whether trlan terminated because of some kind of

error, the two elements of TRL_INFO_T that are most like to be useful after returning from

trlan are stat and nec, where the �rst one is the error ag of trlan and the second one

indicates how many eigenvalues and eigenvectors have converged.

The input parameters to TRLAN have appeared in the calling sequence of trl_init_

info, trl_set_debug, trl_set_iguess and trl_set_checkpoint are described earlier in

this chapter. The following are elements of TRL_INFO_T are counters set by trlan. To the

user, they are part of the output from TRLAN.

my_pe

npes The PE number and the number of PEs.

ntot The global size of the problem. ntot =
P

allPEs
nrow.

matvec The number of matrix-vector multiplications used by the restarted Lanczos al-

gorithm. It will not signi�cantly exceed the value of maxmv.

nloop The number of restarting loops, i.e., the number of times trlan has reached the

maximum size and restarted.

north The number of times the Gram-Schmidt process is invoked to perform re-

orthogonalization.

nrand The number of times trlan has generated random vectors in attempt to produce

an vector that is orthogonal to the current basis vectors.

locked The number of eigenpairs that has extremely small residual norms ( < epsilon

|| A ||). The accuracies of these eigenpairs can not be further improve by

more Rayleigh-Ritz projection, therefore they are locked to reduce arithmetic

operations, they are only used to perform re-orthogonalization but nothing else.

TRLAN locks not only the wanted eigenpairs with small residual norm, it also

locks unwanted ones depending the restarting strategy. The rational is that if

they converge quickly, it is not good idea to throw them away because they will

reappear in the next basis built.

clk_rate The clock rate of as measured by Fortran 90 intrinsic function system_clock.

clk_max The maximum clock ticks before it rolls over.

clk_tot tick_t clk_op tick_o clk_orth tick_h clk_res tick_r

These set of integer and oating-point variables are used to keep track of

time spend in performing matrix-vector multiplication (clk_op, tick_o), re-

orthogonalization (clk_orth, tick_h), restarting (clk_res, tick_r), and the

whole trlan (clk_tot, tick_t). The four integer counters, clk_op, clk_orth,

clk_res, and clk_tot, are output from Fortran 90 intrinsic function system_

clock. Since it is likely the integer counters will overow in some cases, each

of them has a oating-point counterpart. If they become larger than a quarter

of the maximum counter value clk_max, they are added to the oating-point

counters and reset to zero.
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flop rflp flop_h rflp_h flop_r rflp_r

These set of counters are for counting the number of oating-point operations

used by TRLAN. Flop and rflp are for counting the total oating pointer

operations excluding those used by matrix-vector multiplications. Flop_h and

rflp_h are for counting the re-orthogonalization procedure. Flop_r and rflp_r

count operations used in restarting. The integer counters are used initially until

they become larger than clk_max/4. Once they become too large, their values

are added to the corresponding oating-point counter and they are reset to zero.

Since the matrix-vector multiplication routine is supplied by the user, TRLAN

can not account for the oating-point operations used in that procedure.

crat tmv tres trgt

This set of variables are used to track the convergence factor of the eigenvalue

method. The variable crat is the convergence factor. It is measured after tmv

number of matrix-vector multiplications are used. The value of the target at tmv

was tres. The convergence factor is updated as follows. Among the Ritz values,

search for the one that is closest to trgt. This Ritz value is regarded as the

updated version of the previous target Ritz value. Let res be the residual norm

of the Ritz value, the convergence factor is computed as crat = Exp(Log(res

/ tres) / (matvec - tmv)).

After crat is updated, the current target value is identi�ed as the �rst Ritz value

that is not converged yet. The value of tmv and the corresponding residual norm

tres are recorded.

anrm The estimated norm of the matrix. This is the largest absolute value of any Ritz

value ever computed by TRLAN. After a number of steps, this is a good estimate

of the matrix 2-norm. This variable is primarily used in the convergence test.

If the user speci�es a tolerance tol, all the Ritz pairs with residual norm less

than tol * anrm are considered converged.

stat The error ag. The next section describes the meaning of the error codes in

detail.

4.7 TRLAN error code

This section lists all error numbers de�ned in TRLAN and discusses possible remedies

to the errors. Currently (TRLAN version 1.0), de�nes the follow error numbers,

0 No error.

It is possible that trlan has not computed all wanted eigenpairs, check the

value of nec to see exactly how many wanted eigenpairs have converged. In

case you have not computed all wanted eigenpairs, the possible solutions are:

� If checkpoint �les were written, restart with the checkpoint �les.

� If no checkpoint �les were written, make a linear combination of the ap-

proximate eigenvectors and use the resulting vector as the initial guess. In

addition, make sure to set appropriate options with trl_set_checkpoint

to generate checkpoint �les for future use.
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� Increase the maximum basis size maxlan, See Section 6.1 [basis size],

page 24 for more details.

� Increase the maximum number of iterations allowed maxmv, See Section 6.4

[maximum iterations], page 25 for more details.

� Use a di�erent restarting strategy, See Section 6.3 [restarting scheme],

page 25 for more details.

-1 The internal record of local problem size (nloc) does not match the value of

nrow used when calling trlan. Most likely the user has used the info variable

de�ned for a di�erent problem.

Solution: Make sure trl_init_info is called before trlan and the arguments

to both functions are correct for the intended eigenvalue problem.

-2 The leading dimension of the eigenvector array evec is smaller than local problem

size, lde < nrow. There isn't enough space in evec to store the eigenvectors

correctly.

Solution: Allocate the array evec with leading dimension larger or equal to

nrow.

-3 The array size of eval is too small to store the eigenvalues, mev < info%ned.

There isn't enough columns in evec either.

Solution: Increase the size of array eval and increase the number of columns

in evec.

-4 TRLAN failed to allocate space for storing the projection matrix, etc.. The size

of this work array (internally called misc) is maxlan * (maxlan + 10). TRLAN

tries to allocate its own workspace if the user has not provided enough workspace

to store the Lanczos basis vectors and the projection matrix, et al.

Solution:

� If there is addition workspace not used, given TRLAN more workspace.

� Decrease the size of maxlan. This will decrease the among of workspace

required.

� If you have control over the swap �le/partition size, increase it will also

solve this problem.

-5 TRLAN failed to allocate space to store the Lanczos vectors. The workspace

(internally called base) size required here is (maxlan + 1 - mev) * nrow.

Solution: See solutions for error code -4.

-11 TRLAN does not have enough workspace to perform Gram-Schmidt procedure

which is used to perform re-orthogonalization. This should not happen un-

less the caller directly calls lower level routine trlanczos with insuÆcient

workspace.

Solution: Increase workspace provided.

-12 TRLAN does not have enough workspace to compute eigenvalues of a symmetric

tridiagonal matrix. This should not happen unless the caller directly uses the

lower level routine trlanczos with insuÆcient workspace.

Solution: Increase workspace provided.
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-101 The orthogonalization routine of TRLAN does not have enough workspace. This

should not happen unless trl_orth is directly called outside of TRLAN with

insuÆcient workspace.

Solution: Increase workspace provided.

-102 The norm of the residual vector of Lanczos iterations is not a set of valid �nite

oating-point numbers. Unless the operator norm is exceeding large, say large

than 1E160, this error code should not be generated. If it is, normally it is

an indication of other errors. For example, the workspace given by the user is

not as large as the user indicated to trlan, the array evec is actually smaller

than (lde, mev), the �rst nec columns of evec are not orthonormal vectors on

input, or you have encounter a bug in TRLAN or one of the libraries used by

TRLAN.

Solution:

� Make sure the workspace array given to trlan is as large as claimed, i.e.,

the actual size of wrk is at least as large as lwrk. If wrk is present but not

lwrk, the actual size of wrk should be no less than mev.

� Make sure there is enough space to store the eigenvalues and eigenvectors

even if you think trlan is not going to compute all the eigenvectors be-

cause trlan uses the space in evec to store the Lanczos vectors during its

computations.

� If the initial nec is not zero, make sure that the known eigenvectors are

stored in the �rst nec columns of evec and the eigenvalues in the �rst nec

elements of eval.

The above solution should be considered applicable to all the following error

conditions. If you have checked everything suggested here, then you may have

found an error in TRLAN program. Report the problem to the authors.

-111 InsuÆcient workspace to one of a lower level routine used by TRLAN to reduce

the arrowhead of the projection matrix into tridiagonal matrix. This should

not happen unless the user directly calls the low level routine.

Solution: Report the problem to the authors.

-112 TRLAN has failed to generate an orthogonal transformation to reduce the pro-

jection matrix into a tridiagonal matrix, i.e., LAPACK routine dsytrd/ssytrd

has failed. This is extremely unlikely to happen.

Solution: Check to make sure you have a correct version of the LAPACK. If

your LAPACK is installed correctly, see suggestions for error -102.

-113 TRLAN has failed to apply the orthogonal transformation to reduce the projec-

tion matrix into a tridiagonal matrix, i.e., LAPACK routine dorgtr/sorgtr has

failed. This is extremely unlikely to happen.

Solution: See solutions to error -102.

-121 InsuÆcient workspace to compute the eigenvalues of a tridiagonal matrix. This

error should not occur if the size of workspace wrk passed to trlan is no less

than lwrk.

Solution: See solutions to error -102.
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-122 TRLAN has failed to computed the eigenvalues of a tridiagonal matrix. This is

extremely unlikely to happen.

Solution: See solutions to error -102.

-131 InsuÆcient workspace to compute the eigenvectors of a tridiagonal matrix. This

error should not occur if workspace of correct size was provided to TRLAN.

Solution: See solution to error -102.

-132 TRLAN has failed to compute the eigenvectors of the projection matrix, more

speci�cally, LAPACK routine dstein/sstein has failed. Normally, if this hap-

pens, TRLAN will switch to a di�erent method of computing the eigenvectors.

It is very unlikely the user will see this error ag. If it does show up, it might

be an indication of error in the program.

Solution: See solutions to error -102.

-141 InsuÆcient workspace to compute the eigenvectors of a tridiagonal matrix. This

error should not occur if workspace of correct size was provided to TRLAN.

Solution: See solutions to error -102.

-142 TRLAN has failed because LAPACK routine dsyev/ssyev has failed to compute

the eigenvalues and eigenvectors of the projection matrix.

Solution: Check to make sure LAPACK is installed correctly. See solution to

error -102.

-143

-144 TRLAN is unable to match the Ritz values selected to be saved with the eigen-

value found by dsyev/ssyev.

Solution: See solutions to error -102.

-201 The Gram-Schmidt procedure is called with insuÆcient workspace.

Solution: Increase the workspace size. If you did not call trl_cgs directly,

make sure workspace size lwrk matches the actual size of wrk when calling

trlan.

-202

-203 The Gram-Schmidt process has failed to orthogonalize the given vector to the

current basis vectors. This is unlikely to happen. If it does, it indicates two

possibly source of problem, the current basis vectors are not orthogonal, or the

random vectors generated by TRLAN fall in the space spanned by the current

Lanczos vectors.

Solution: One possible solution to this problem is to call FORTRAN 90 random

number generator to set each processor with a di�erent seed value. For exam-

ple, the following code segment will cause random_number to generate di�erent

random numbers on each processor the next time it is used and it also produces

an random vector as initial guess for the Lanczos iterations.

call random_number(evec(1:nrow,1))

do i = 1, info%my_pe

call random_number(evec(1:nrow,1))

end do
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If reseting the seed of the random number generator does not �x the problem,

then there might be a more serious problem.

See also solutions to error -102.

-204 The vector norm after orthogonalization is not a valid oating-point number.

Solution: See solutions to error -102.

-211 The leading dimension of the arrays are not large enough for storing the vectors

in a checkpoint �le. This error should have been caught earlier as error -2

unless the checkpoint �les are not for the same problem or not produced with

the same number of processors.

Solution: Make sure the checkpoint �les are generated on the same type of

machines and for the same problem using the same number of processors.

-212 Unable to open checkpoint �les to read.

Solution: Make sure the checkpoint �les exist, the names are correct, and the

I/O unit number cpio is not used for something else already.

-213 The array size stored in checkpoint �le is di�erent from passed in by user. The

checkpoint �le is probably for a di�erent problem or was generated with di�erent

number of processors.

Solution: Make sure the checkpoint �les are generated for the same problem

and using the same number of processors.

-214 There are more vectors stored in the checkpoint �le than maxlan.

Solution: Increase the size of maxlan.

-215 Error was encountered while reading the content of the checkpoint �les.

Solution: Make sure the checkpoint �les are generated for the same problem

on the same type of machines.

-216 Error was encountered while trying to close the checkpoint �le after completed

reading.

Solution: This error probably can be ignored. Consult you system adminis-

trator.

-221 Unable to open checkpoint �les for writing.

Solution: Make sure the I/O unit number speci�ed to be used for writing

checkpoint �les are not used for other tasks and make sure you have permission

to write �les in the location where the program is running.

-222 Error was encountered while writing the checkpoint �les.

Solution: Make sure there is enough space on the disk to store the checkpoint

�les. If there is k Lanczos vectors to be written out, the number of bytes

is 8*(2+2*k+nrow*(k+1)) for each processor. The maximum value for k is

maxlan.

-223 Error was encountered while trying to close the checkpoint �les after write them.

Solution: This error probably can be ignored. Consult you system adminis-

trator.
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This list represents all error code de�ned in TRLAN version 1.0. The function trlan

should never return an error code not listed here. If you encountered one and you are

sure that all the arguments to TRLAN functions are correct, you have uncovered a aw

in TRLAN, contact the authors with a description of your problem. A short example is

always welcome.
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5 Main function interfaces

The majority of the arithmetic computations to solve an eigenvalue problem are executed

in the main function of TRLAN package and the user's own matrix-vector multiplication

function. This section gives a more detail description of the interfaces of these two functions.

5.1 Interface of trlan

The main computation kernel of TRLAN package is named trlan. We have see a short

description of its arguments in Chapter 3 [Example], page 4. To provide a di�erent view of

the interface, we show its Fortran 90 interface block.

Subroutine trlan(op, info, nrow, mev, eval, evec, lde, wrk, lwrk)

Use trl_info

Implicit None

Type(TRL_INFO_T) :: info

Integer, Intent(in) :: lde, mev, nrow

Integer, Intent(in), Optional :: lwrk

Double Precision, Intent(inout) :: eval(mev), evec(lde,mev)

Double Precision, Target, Dimension(:), Optional :: wrk

Interface

Subroutine OP(nrow, ncol, xin, ldx, yout, ldy)

Integer, Intent(in) :: nrow, ncol, ldx, ldy

Double Precision, Dimension(ldx*ncol), Intent(in) :: xin

Double Precision, Dimension(ldy*ncol), Intent(out) :: yout

End Subroutine OP

End Interface

End Subroutine trlan

Most of the arguments of this subroutine are explained before in Chapter 3 [Example],

page 4. However for completeness, we will list all of them here.

op The operator routine. It applies the operator on xin and stores the resulting

vectors in yout. In linear algebra terms, this is a matrix-vector multiplication

routine. The vectors to be multiplied are stored in xin and the resulting vectors

are stored in yout.

info A variable of Fortran 90 derived type TRL_INFO_T. It carries the information

to and from TRLAN. See Chapter 4 [TRL INFO module], page 7, for more

details.

nrow The number of rows on this processor if the problem is distributed using MPI,

else the number of total rows in a Lanczos vector.

mev The number of elements in array eval and the number of columns in array evec.

It denotes the maximum number of eigenpairs that can be stored in eval and

evec.

NOTE: Since the array evec will be used internal to store

mev Lanczos vectors, even if you do not think TRLAN is able to compute mev

eigenvectors at the end, you still declare evec as large as (nrow, mev).
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eval

evec The arrays used to store the eigenvalue values (eval) and the eigenvectors (evec).

On entry to trlan, if info%nec is greater than zero (0), the �rst info%nec

elements of eval shall contain the eigenvalues already known and the �rst

info%nec columns of evec shall contain the corresponding eigenvectors. These

eigenpairs are assumed to have zero residual norms and will not be modi�ed by

TRLAN. On exit from trlan, the converged solutions are stored in the front

of eval and evec, i.e. the �rst info%nec eigenvalues in eval contains the

converged eigenvalues and the �rst info%nec columns of evec are the corre-

sponding eigenvectors.

lde The leading dimension of array evec. It is expected to be no less than nrow,

otherwise the eigenvectors can not be stored properly and trlan will abort

with error code info%stat = -2.

wrk

lwrk These two are optional arguments. If both are present, wrk will be used as

workspace inside and lwrk shall be the number of elements in array wrk. TR-

LAN will try to use this workspace if it is large enough for either misc (size

maxlan * (maxlan + 10)) or base (size (maxlan + 1 - mev) * nrow). If wrk is

present but not lwrk, the workspace size is assumed to be mev. It does not

make sense to have only lwrk without argument wrk. If it is the case, lwrk is

ignored.

If argument wrk is present and there is enough space to store the residual norms

of the solutions, the �rst info%nec elements of wrk will contain the residual

norms corresponding to the info%nec converged solutions.

5.2 Operator interface

TRLAN program require the user to provide his/her own matrix-vector multiplication

routine. The matrix-vector multiplication routine needs to have the following interface.

Subroutine OP(nrow, ncol, xin, ldx, yout, ldy)

Integer, Intent(in) :: nrow, ncol, ldx, ldy

Double Precision, Dimension(ldx*ncol), Intent(in) :: xin

Double Precision, Dimension(ldy*ncol), Intent(out) :: yout

End Subroutine OP

nrow The number of rows on this processor if the problem is distributed using MPI,

otherwise the number of total rows in a Lanczos vector.

ncol The number of vectors (columns in xin and yout) to be multiplied.

xin The array to store the input vectors to be multiplied. The following two decla-

rations are equivalent on most machines,

Double Precision, Dimension(1:ldx,1:ncol), Intent(in)::xin

Real*8 xin(1:ldx, 1:ncol)

The ith column of xin is xin((i-1)*ldx+1 : (i-1)*ldx+nrow) if xin is de-

clared as one-dimensional array. If the user routine actually declare it as a

two-dimensional array, the ith column should be xin(1:nrow, i). TRLAN
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calls OP using Fortran 77 style argument matching, only starting address of

xin will be passed.

For those who are familiar with C/C++: xin is actually passed as double *

that points to the �rst element of array. Elements in a column are ordered

consecutively and the ith column starts at (i-1)*ldx.

ldx The leading dimension of the array xin when it is declared as two-dimensional

array.

yout The array to store results of the multiplication. It can be equivalently declared

as

Double Precision,Dimension(1:ldy,1:ncol),Intent(out)::yout

Real*8 yout(1:ldy, 1:ncol)

The usage notes on xin also apply to yout.

ldy The leading dimension of the array yout when it is declared as two-dimensional

array.

This simple interface only has enough information to describe the input and output

vectors. Here are some possible ways of passing the matrix information to this subroutine.

In Fortran 90, we recommend using a module to encapsulate information related to the

matrix. If Fortran 77 is used, a common blockmay be used for the same purpose. Normally,

if another language like C or C++ is used, the matrix can be packaged in a struct or a class,

and accessed through a global variable.

In case the user does not want to write his/her own matrix-vector multiplication routine.

There are a number of packages out there that can be used. Useful software depots and

information archives include

ACM TOMS http://www.acm.org/toms/

ACTS Toolkit

http://acts.nersc.gov/

National HPCC Software Exchange

http://nhse.cs.utk.edu/

NETLIB http://www.netlib.org

Scientific Application on Linux

http://SAL.KachinaTech.COM/

Potentially useful packages include

Aztec http://www.cs.sandia.gov/CRF/aztec1.html

BlockSolve

http://www.mcs.anl.gov/sumaa3d/BlockSolve/

P_SPARSLIB

http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html

PETSc http://www.mcs.anl.gov/petsc/

SPARSKIT http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
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NOTE: All of the packages mentioned above have matrix-vector multiplications rou-

tines. However some of them are designed for solving linear systems or even larger granu-

larity tasks, some e�ort may be required to directly using their matrix-vector multiplication

routines.
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6 Recommended parameter choices

Before calling trlan, the user needs to decide a few parameters. The most important

parameters are arguments to function trl_init_info. The parameters like nrow, lohi and

ned are determined by the problem to be solved, other parameters to control the execution

of TRLAN might not be familiar to casual users. This part of the manual will give some

recommendations on how to determine those parameters.

6.1 Selecting the maximum basis size (maxlan)

A few factors come into play when picking the maximum basis size maxlan, for example,

the available computer memory size, the number of eigenvalues wanted, and the separation

of wanted eigenvalues from the others. The �rst rule of thumb is that maxlan should at

least as large as

ned + min(6, ned).

Generally, the larger it is, the better TRLAN will perform. The limitation on using a very

large basis is that there might not be enough computer memory to store the basis in memory.

Another concern regarding using a large basis is that the Gram-Schmidt orthogonalization

process will be expensive. In addition, if the basis size is larger than 1000, then the time

spent in �nding the eigenvectors of the projection matrix may be a substantial portion of

the overall execution time.

If the wanted eigenvalues are easier to compute compared to others, then it does not

matter how large the basis size is, the restarted Lanczos method will �nd the solutions

fairly quickly. If the wanted eigenvalues converge slower than the unwanted ones, such as

the example in Chapter 3 [Example], page 4, then the above recommended minimum size

is too small to be e�ective. In this case, the user should look at how many eigenvalues

were locked and compare it with the number of eigenvalues converged. In diÆcult case, it

is not unusually to see a large number of unwanted eigenpairs converge before the wanted

one are �nally computed. In the previous example, the minimum recommended basis size

is 11. Since it is relatively small and we know the eigenvalue problem is relatively hard,

we �rst tried maxlan = 20. After 2,000 matrix-vector multiplications, there are two wanted

eigenvalues converged, and six eigenvalues were locked. After this �rst test, we use the

following guidelines to choose the next basis size.

1. Add two to maxlan for each locked eigenvalue.

2. Increase the basis size by a factor of ned / nec.

The �rst rule suggests the new basis size of about 30 and the second suggest the next choice

could be 50. The basis size used in the example is 40. We are able to �nd the �ve smallest

eigenvalues with this choice. Further tests show that using basis size of 30 can compute

the same 5 eigenvalues in 1056 matrix-vector multiplications, and using a basis size of 50

TRLAN only need 777 matrix-vector multiplications. However, in both cases, more time

was used. This demonstrates the complexity of the choice. In this particular case, either

30, 40 or 50 is a reasonable choice.
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6.2 Selecting the tolerance

The convergence test used in this program is r < tol * || A ||. Normally, if the matrix

is stored, the accuracy of the matrix-vector multiplication routine is on the order of epsilon

* || A ||. The unit round-o� error (epsilon) of a 64-bit IEEE oating-point number is

approximately 2.2E-16. The default value of tol is about 1.49E-8. Typically, if 5 digits

of accuracy is desired for the eigenvectors, tol should be set to 1E-5.

6.3 Selecting a restarting scheme

This is another parameter that can change the execution time dramatically. However,

e�ective restarting schemes are still subject of active academic researches. On the example

given before, schemes 1 and 2 uses about the same amount of matrix-vector multiplications

which are more than the number of matrix-vector multiplications used with schemes 3

and 4. However, because schemes 3 and 4 perform more restarts and they save more

basis vectors during restarting, their restarting procedures are more expensive. The actual

execution time with schemes 3 and 4 are longer than those with schemes 1 and 2. Based on

these observations, schemes 3 and 4 are better if the matrix-vector multiplication is very

time-consuming, say, one matrix-vector multiplication takes more time than an average

restart. If the matrix-vector multiplication is relatively inexpensive, then schemes 1 and 2

are preferred. Scheme 5 attempts to mimic the restarting strategy in ARPACK, in many

cases, it has comparable performance as the scheme 1.

6.4 Selecting the maximum iterations

TRLAN is stopped usually after it has found all the wanted eigenvalues and the corre-

sponding eigenvectors. The other normal stopping condition is to stop after maxmv number

of matrix-vector multiplications. Typically, we would allow a �xed number of matrix-vector

multiplications for each eigenvalue, for example, 100 per eigenvalue. When we are try-

ing to �nd the correct value to use for maxlan and restart we may limit the number of

matrix-vector multiplications used to reduce the time consumed. The default value in trl_

init_info is very large especially for large problems. An more acceptable limit might be

1000 matrix-vector multiplications per eigenvalue. This should be suÆcient for most prob-

lems. If more than 1000 matrix-vector multiplications are used to compute one eigenvalue,

other means of computing eigenvalues should be tried. For example, the shift-and-invert

Lanczos method is often able to compute the desired eigenvector in a few steps. The shift-

and-invert scheme computes the extreme eigenvalues of (A � �I)�1 �rst, then derive the

actual eigenvalues of A. To use this scheme, one need to either invert the matrix or at least

being able to solve linear systems, (A� �I)u = v. If neither is feasible, then the Davidson

method might be an alternative to consider.

If TRLAN does not return with status 0, consult Section 4.2 [debug parameters], page 8,

to setup a debugging session, and refer to Section 4.7 [error code], page 14, for error en-

countered and possible solutions.
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7 Miscellaneous issues

7.1 Workspace requirement

Some of the issues related to workspace requirements have been mentioned through out

this manual. This section provide a central location to collect all the information for ease

of reference.

Inside of trlan, there are three large chucks of workspace, evec, base and misc. The user

always provides the array evec, since it is necessary to carry input and output information

for TRLAN. Its size is clearly de�ned in the calling sequence by lde and mev. The array

base is used to store the basis vectors if the array evec can not store maxlan+1 vectors.

Given the maximum basis size maxlan, the size of base is (maxlan + 1 - mev) * nrow).

The array misc is used to store the projection matrix, the eigenvalues and eigenvectors of

the projection matrix, workspace required by all lower level routines of TRLAN, library

routines from LAPACK and BLAS. Its size should be no less than maxlan * (maxlan + 10).

If it is larger in size, some library routines might run faster. Thus if there is large amount

of computer memory, the user can let TRLAN use it by pass in a large array wrk.

If the user provides a workspace wrk to trlan, then its size is checked to see either one

of misc or base or both of them can �t inside the workspace. If at lease one of them can �t

into wrk, it would be used. If wrk is large enough for both base and misc, the array base

will use (maxlan + 1 - mev) * nrow) elements and the rest is given to misc. If trlan can

not use wrk, it will allocate workspace of appropriate size internally.

If wrk is provided, its content is not used on input. However before returning, trlan

will copy the residual norms of the converged Ritz pairs in the �rst nec elements of wrk.

7.2 Variations of TRLAN

We have isolated the communication needs of TRLAN in four subroutines, trl_init_

info, trl_sync_flag, trl_g_sum, and trl_g_dot. The four subroutines are located in a

�le called `trl_comm_mpi.f90' for the MPI version and `trl_comm_none.f90' for sequential

version. If the the matrix-vector multiplication routine and the main program are written

for sequential machine, the user can simply compile with `trl_comm_none.f90' to get the

sequential version of the program. This setup makes it easy to adopt TRLAN for di�erent

types of eigenvalue problems.

The function trl_init_info is used to initialize the TRL_INFO_T type variable to be used

by trlan. The function trl_sync_flag is used to synchronize the status ags used inside

TRLAN. In the current implementation, it computes the minimum value of info%stat on

each processor and reset all info%stat to the minimum value. Given that the error ags

are all less than zero (0), if any processor has detected an error, all of them will be set to

indicate an error. Trl_g_sum computes the global sum of an input array and it returns

the global sum in the same array. The subroutine trl_g_dot computes the dot-products

among the Lanczos vectors.

If desired, one can change these four routines to suit di�erent situations. For example, if

the physical domain of the eigenvalue problem has certain symmetry, usually the discretiza-

tion does not contain the whole domain but only a portion of it. Since not every element of a
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vector is stored, the dot-product routine needs to be modi�ed. In this case, only trl_g_dot

and trl_g_sum need to be modi�ed in order for TRLAN for function properly.

7.3 Calling from other languages

TRLAN program is implemented in Fortran 90. Since Fortran 90 is backward com-

patible with previous versions of Fortran. There should be no problem to use it in any

other Fortran program. However, at the moment, the authors are not aware of a scheme

to reliably access Fortran 90 subroutine with optional arguments, a subroutine with �xed

arguments is created to get around this problem. The �xed arguments subroutine has the

following interface,

subroutine trlan77(op, ipar, nrow, mev, eval, evec, lde,

& wrk, lwrk)

integer ipar(32), nrow, mev, lde, lwrk

double precision eval(mev), evec(lde, mev), wrk(lwrk)

external op

The Fortran 90 derived type TRL_INFO_T variable is removed from this user interface since

its primary access function trl_init_info contains optional arguments as well. Here is a

list showing how the integer array ipar is mapped to the elements of TRL_INFO_T,

� ipar(1) = stat,

� ipar(2) = lohi,

� ipar(3) = ned,

� ipar(4) = nec,

� ipar(5) = maxlan,

� ipar(6) = restart,

� ipar(7) = maxmv,

� ipar(8) = mpicom,

� ipar(9) = verbose,

� ipar(10) = log_io,

� ipar(11) = iguess,

� ipar(12) = cpflag,

� ipar(13) = cpio,

� ipar(14) = mvop,

� ipar(24) = locked,

� ipar(25) = matvec,

� ipar(26) = nloop,

� ipar(27) = north,

� ipar(28) = nrand,

� ipar(29) = total time in milliseconds,

� ipar(30) = MATVEC time in milliseconds.

� ipar(31) = re-orthogonalization time in milliseconds.

� ipar(32) = restarting time in milliseconds.
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Among the parameters, ipar(2 : 14) are input parameters, ipar(1), ipar(4) and ipar(24

: 32) are output parameters.

There are two oating-point number elements in TRL_INFO_T, tol and crat. Before

calling trlan77, the �rst element of wrk should be set to the residual tolerance tol. Inside

trlan77, wrk(1) is transfered to tol. On return from trlan77, the �rst ipar(4) elements

of wrk store the residual norms corresponding to the converged eigenvalues and eigenvectors.

Element ipar(4)+1 of wrk will store the last known value of crat. Caution: Fail to

set wrk(1) to a valid oating-point number will cause TRLAN to produce oating-point

exceptions!

The subroutine trlan77 is relative simple to call from C/C++. The �le `simplec.c' in

the distribution of TRLAN version 1.0 has equivalent functionalities as `simple.f90' and

`simple.f77'.

7.4 Debugging

Here are a few suggestions on what to watch out for when using TRLAN. Some of

suggestions are simply good programming practices.

� Use implicit none in Fortran programs. This is very e�ective in catching typos. It

is also a good practice to check the programs with automated tools such as lint and

ftnchek.

� Make sure the arrays passed to TRLAN have correct dimensions and make sure the

argument lwrk is actually the size of array wrk.

� Make sure all input variables to TRLAN are initialized correctly and arguments to

trlan matches arguments to trl_init_info.

� When encountering problems, turn on debugging options in TRLAN by calling trl_

set_debug prior to calling trlan. Set the ninth and tenth element of array ipar to

appropriate values when trlan77 is used. Consult Section 4.2 [debug parameters],

page 8 to setup a debugging session. Refer to Section 4.7 [error code], page 14 for error

encountered and possible solutions.

� If all above have been done and there is still a problem, contact the author at the

address given in Section 7.5 [contacting authors], page 28.

7.5 Contacting the authors

The authors of TRLAN and this document can be contacted at the following email

addresses: kwu@lbl.gov (Kesheng Wu), hdsimon@lbl.gov (Horst Simon). Kesheng

Wu can also be reached at kwu@ieee.org and kwu@computer.org. The authors also

maintain their own research pages on the web at http://www.nersc.gov/~kewu and

http://www.nersc.gov/research/SIMON. The updated software package can also be

found at both web addresses.
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